// // Programmer: Craig Stuart Sapp <craig@ccrma.stanford.edu> // Creation Date: Sun Jun 11 21:04:49 PDT 2006 // Last Modified: Fri Jun 23 01:45:07 PDT 2006 (subclassed to MazurkaPlugin) // Filename: MzSpectrogramFFTW.cpp // URL: http://sv.mazurka.org.uk/src/MzSpectrogramFFTW.cpp // Documentation: http://sv.mazurka.org.uk/MzSpectrogramFFTW // Syntax: ANSI99 C++; vamp 0.9 plugin // // Description: Demonstration of how to create spectral data from time data // supplied by the host application using the FFTW library // for Fourier Transforms. // #include "MzSpectrogramFFTW.h" #include <math.h> /////////////////////////////////////////////////////////////////////////// // // Vamp Interface Functions // /////////////////////////////// // // MzSpectrogramFFTW::MzSpectrogramFFTW -- class constructor. // MzSpectrogramFFTW::MzSpectrogramFFTW(float samplerate) : MazurkaPlugin(samplerate) { mz_minbin = 0; mz_maxbin = 0; mz_wind_buff = NULL; } /////////////////////////////// // // MzSpectrogramFFTW::~MzSpectrogramFFTW -- class destructor. // MzSpectrogramFFTW::~MzSpectrogramFFTW() { delete [] mz_wind_buff; } //////////////////////////////////////////////////////////// // // required polymorphic functions inherited from PluginBase: // std::string MzSpectrogramFFTW::getName(void) const { return "mzspectrogramfftw"; } std::string MzSpectrogramFFTW::getMaker(void) const { return "The Mazurka Project"; } std::string MzSpectrogramFFTW::getCopyright(void) const { return "2006 Craig Stuart Sapp"; } std::string MzSpectrogramFFTW::getDescription(void) const { return "FFTW Spectrogram"; } int MzSpectrogramFFTW::getPluginVersion(void) const { #define P_VER "200606260" #define P_NAME "MzSpectrogramFFTW" const char *v = "@@VampPluginID@" P_NAME "@" P_VER "@" __DATE__ "@@"; if (v[0] != '@') { std::cerr << v << std::endl; return 0; } return atol(P_VER); } //////////////////////////////////////////////////////////// // // optional polymorphic parameter functions inherited from PluginBase: // // Note that the getParameter() and setParameter() polymorphic functions // are handled in the MazurkaPlugin class. // ////////////////////////////// // // MzSpectrogramFFTW::getParameterDescriptors -- return a list of // the parameters which can control the plugin. // MzSpectrogramFFTW::ParameterList MzSpectrogramFFTW::getParameterDescriptors(void) const { ParameterList pdlist; ParameterDescriptor pd; // first parameter: The minimum spectral bin to display pd.name = "minbin"; pd.description = "Minimum\nfrequency\nbin"; pd.unit = ""; pd.minValue = 0.0; pd.maxValue = 30000.0; pd.defaultValue = 0.0; pd.isQuantized = 1; pd.quantizeStep = 1.0; pdlist.push_back(pd); // second parameter: The maximum spectral bin to display pd.name = "maxbin"; pd.description = "Maximum\nfrequency\nbin"; pd.unit = ""; pd.minValue = -1.0; pd.maxValue = 30000.0; pd.defaultValue = -1.0; pd.isQuantized = 1; pd.quantizeStep = 1.0; pdlist.push_back(pd); return pdlist; } //////////////////////////////////////////////////////////// // // required polymorphic functions inherited from Plugin: // ////////////////////////////// // // MzSpectrogramFFTW::getInputDomain -- the host application needs // to know if it should send either: // // TimeDomain == Time samples from the audio waveform. // FrequencyDomain == Spectral frequency frames which will arrive // in an array of interleaved real, imaginary // values for the complex spectrum (both positive // and negative frequencies). Zero Hz being the // first frequency sample and negative frequencies // at the far end of the array as is usually done. // Note that frequency data is transmitted from // the host application as floats. The data will // be transmitted via the process() function which // is defined further below. // MzSpectrogramFFTW::InputDomain MzSpectrogramFFTW::getInputDomain(void) const { return TimeDomain; } ////////////////////////////// // // MzSpectrogramFFTW::getOutputDescriptors -- return a list describing // each of the available outputs for the object. OutputList // is defined in the file vamp-sdk/Plugin.h: // // .name == short name of output for computer use. Must not // contain spaces or punctuation. // .description == long name of output for human use. // .unit == the units or basic meaning of the data in the // specified output. // .hasFixedBinCount == true if each output feature (sample) has the // same dimension. // .binCount == when hasFixedBinCount is true, then this is the // number of values in each output feature. // binCount=0 if timestamps are the only features, // and they have no labels. // .binNames == optional description of each bin in a feature. // .hasKnownExtent == true if there is a fixed minimum and maximum // value for the range of the output. // .minValue == range minimum if hasKnownExtent is true. // .maxValue == range maximum if hasKnownExtent is true. // .isQuantized == true if the data values are quantized. Ignored // if binCount is set to zero. // .quantizeStep == if isQuantized, then the size of the quantization, // such as 1.0 for integers. // .sampleType == Enumeration with three possibilities: // OD::OneSamplePerStep -- output feature will be aligned with // the beginning time of the input block data. // OD::FixedSampleRate -- results are evenly spaced according to // .sampleRate (see below). // OD::VariableSampleRate -- output features have individual timestamps. // .sampleRate == samples per second spacing of output features when // sampleType is set toFixedSampleRate. // Ignored if sampleType is set to OneSamplePerStep // since the start time of the input block will be used. // Usually set the sampleRate to 0.0 if VariableSampleRate // is used; otherwise, see vamp-sdk/Plugin.h for what // positive sampleRates would mean. // MzSpectrogramFFTW::OutputList MzSpectrogramFFTW::getOutputDescriptors(void) const { OutputList list; OutputDescriptor od; // First and only output channel: od.name = "magnitude"; od.description = "Magnitude Spectrum"; od.unit = "decibels"; od.hasFixedBinCount = true; od.binCount = mz_maxbin - mz_minbin + 1; od.hasKnownExtents = false; // od.minValue = 0.0; // od.maxValue = 0.0; od.isQuantized = false; // od.quantizeStep = 1.0; od.sampleType = OutputDescriptor::OneSamplePerStep; // od.sampleRate = 0.0; list.push_back(od); return list; } ////////////////////////////// // // MzSpectrogramFFTW::initialise -- this function is called once // before the first call to process(). // bool MzSpectrogramFFTW::initialise(size_t channels, size_t stepsize, size_t blocksize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) { return false; } // step size and block size should never be zero if (stepsize <= 0 || blocksize <= 0) { return false; } setChannelCount(channels); setBlockSize(blocksize); setStepSize(stepsize); mz_minbin = getParameterInt("minbin"); mz_maxbin = getParameterInt("maxbin"); if (mz_minbin >= getBlockSize()/2) { mz_minbin = getBlockSize()/2-1; } if (mz_maxbin >= getBlockSize()/2) { mz_maxbin = getBlockSize()/2-1; } if (mz_maxbin < 0) { mz_maxbin = getBlockSize()/2-1; } if (mz_maxbin < mz_minbin) { std::swap(mz_minbin, mz_maxbin); } // The signal size/transform size are equivalent for this // plugin but the FFTW can handle any size transform. // If the size of the transform is a multiple of small // prime numbers the FFT will be used, otherwise it will // be slow (when block size=1021 for example). mz_transformer.setSize(getBlockSize()); delete [] mz_wind_buff; mz_wind_buff = new double[getBlockSize()]; makeHannWindow(mz_wind_buff, getBlockSize()); return true; } ////////////////////////////// // // MzSpectrogramFFTW::process -- This function is called sequentially on the // input data, block by block. After the sequence of blocks has been // processed with process(), the function getRemainingFeatures() will // be called. // // Here is a reference chart for the Feature struct: // // .hasTimestamp == If the OutputDescriptor.sampleType is set to // VariableSampleRate, then this should be "true". // .timestamp == The time at which the feature occurs in the time stream. // .values == The float values for the feature. Should match // OD::binCount. // .label == Text associated with the feature (for time instants). // #define ABSSQUARE(x, y) ((x)*(x) + (y)*(y)) #define ZEROLOG -120.0 MzSpectrogramFFTW::FeatureSet MzSpectrogramFFTW::process(float **inputbufs, Vamp::RealTime timestamp) { if (getChannelCount() <= 0) { std::cerr << "ERROR: MzSpectrogramFFTW::process: " << "MzSpectrogramFFTW has not been initialized" << std::endl; return FeatureSet(); } // first window the input signal frame windowSignal(mz_transformer, mz_wind_buff, inputbufs[0]); // then calculate the complex DFT spectrum. mz_transformer.doTransform(); // return the spectral magnitude frame to the host application: FeatureSet returnFeatures; Feature feature; feature.hasTimestamp = false; float magnitude; for (int i=mz_minbin; i<=mz_maxbin; i++) { magnitude = (float)mz_transformer.getSpectrumMagnitudeDb(i); feature.values.push_back(magnitude); } returnFeatures[0].push_back(feature); return returnFeatures; } ////////////////////////////// // // MzSpectrogramFFTW::getRemainingFeatures -- This function is called // after the last call to process() on the input data stream has // been completed. Features which are non-causal can be calculated // at this point. See the comment above the process() function // for the format of output Features. // MzSpectrogramFFTW::FeatureSet MzSpectrogramFFTW::getRemainingFeatures(void) { // no remaining features, so return a dummy feature return FeatureSet(); } ////////////////////////////// // // MzSpectrogramFFTW::reset -- This function may be called after data // processing has been started with the process() function. It will // be called when processing has been interrupted for some reason and // the processing sequence needs to be restarted (and current analysis // output thrown out). After this function is called, process() will // start at the beginning of the input selection as if initialise() // had just been called. Note, however, that initialise() will NOT // be called before processing is restarted after a reset(). // void MzSpectrogramFFTW::reset(void) { // no actions necessary to reset this plugin } /////////////////////////////////////////////////////////////////////////// // // Non-Interface Functions // ////////////////////////////// // // MzSpectrogramFFTW::makeHannWindow -- create a raised cosine (Hann) // window. // void MzSpectrogramFFTW::makeHannWindow(double* output, int blocksize) { for (int i=0; i<blocksize; i++) { output[i] = 0.5 - 0.5 * cos(2.0 * M_PI * i/blocksize); } } ////////////////////////////// // // MzSpectrogramFFTW::windowSignal -- multiply the time signal // by the analysis window to prepare for transformation. // void MzSpectrogramFFTW::windowSignal(MazurkaTransformer& transformer, double* window, float* input) { int blocksize = transformer.getSize(); for (int i=0; i<blocksize; i++) { transformer.signalNonCausal(i) = window[i] * double(input[i]); } } |