// // Programmer: Craig Stuart Sapp <craig@ccrma.stanford.edu> // Creation Date: Tue May 9 05:25:27 PDT 2006 // Last Modified: Sat May 20 05:41:31 PDT 2006 (added parameters) // Last Modified: Thu May 25 22:27:53 PDT 2006 (added stereo diff & sensitivity) // Last Modified: Thu Jul 20 06:54:55 PDT 2006 (added log/linear vertical scale) // Filename: MzNevermore.cpp // URL: http://sv.mazurka.org.uk/src/MzNevermore.cpp // Documentation: http://sv.mazurka.org.uk/MzNevermore // Syntax: ANSI99 C++; vamp plugin // // Description: Display audio signal in two dimensions. // #include "MzNevermore.h" #include <stdio.h> #include <string> #include <math.h> #define DB_MIN -120 #define S_LINEAR 0 #define S_LOG 1 /////////////////////////////////////////////////////////////////////////// // // Vamp Interface Functions // /////////////////////////////// // // MzNevermore::MzNevermore -- class constructor. // MzNevermore::MzNevermore(float samplerate) : MazurkaPlugin(samplerate) { mz_transformsize = 1024; mz_minbin = 0; mz_maxbin = 511; mz_compress = 0; mz_scale = S_LINEAR; } /////////////////////////////// // // MzNevermore::~MzNevermore -- class destructor. // MzNevermore::~MzNevermore() { // do nothing } //////////////////////////////////////////////////////////// // // parameter functions -- // ////////////////////////////// // // MzNevermore::getParameterDescriptors -- return a list of // the parameters which can control the plugin. // // // "windowsamples" -- number of samples in audio window // "transformsamples" -- number of samples in transform // "stepsamples" -- number of samples between analysis windows // "minbin" -- lowest transform bin to display // "maxbin" -- highest transform bin to display MzNevermore::ParameterList MzNevermore::getParameterDescriptors(void) const { ParameterList pdlist; ParameterDescriptor pd; // first parameter: The number of samples in the audio window pd.name = "windowsamples"; pd.description = "Window size"; pd.unit = "samples"; pd.minValue = 2.0; pd.maxValue = 10000; pd.defaultValue = 1500.0; pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); // second parameter: The number of samples in the Fourier transform // Note: must be equal or greater than the window size. This will // be enforced in the initialise() function. pd.name = "transformsamples"; pd.description = "Transform size"; pd.unit = "samples"; pd.minValue = 2.0; pd.maxValue = 30000.0; pd.defaultValue = 2048.0; pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); // third parameter: The step size between analysis windows. pd.name = "stepsamples"; pd.description = "Step size"; pd.unit = "samples"; pd.minValue = 2.0; pd.maxValue = 30000.0; pd.defaultValue = 512.0; pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); // fourth parameter: The minimum bin number to display. // Note: must be less or equal to the maximum bin size. // This will be enforced in the initialise() function. pd.name = "minbin"; pd.description = "Min spectral bin"; pd.unit = "bin"; pd.minValue = 0.0; pd.maxValue = 30000.0; pd.defaultValue = 0.0; pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); // fifth parameter: The minimum bin number to display in terms // of frequency. This will override "minbin" if set to a value // other than 0.0; pd.name = "minfreq"; pd.description = " or in Hz:"; pd.unit = "Hz"; pd.minValue = 0.0; pd.maxValue = getSrate()/2.0; pd.defaultValue = 0.0; pd.isQuantized = false; //pd.quantizeStep = 1.0; pdlist.push_back(pd); // sixth parameter: The maximum bin number to display. // Note: must be greater or equal to the mininimum bin size, // and smaller than the transform size. This will // be enforced in the initialise() function. pd.name = "maxbin"; pd.description = "Max spectral bin"; pd.unit = "bin"; pd.minValue = 0.0; pd.maxValue = 30000.0; pd.defaultValue = 2048.0; pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); // seventh parameter: The maximum bin number to display in // terms of frequency. This will override "maxbin" if set // to a value other than 0.0 pd.name = "maxfreq"; pd.description = " or in Hz:"; pd.unit = "Hz"; pd.minValue = 0.0; pd.maxValue = getSrate()/2.0; pd.defaultValue = pd.minValue; pd.isQuantized = false; // pd.quantizeStep = 1.0; pdlist.push_back(pd); // eighth parameter: Magnitude range compression. pd.name = "compress"; pd.description = "Compress range"; pd.unit = ""; pd.minValue = 0.0; pd.maxValue = 1.0; pd.defaultValue = 1.0; pd.valueNames.push_back("no"); pd.valueNames.push_back("yes"); pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); pd.valueNames.clear(); // ninth parameter: Signal windowing method pd.name = "windowtype"; pd.description = "Window type"; pd.unit = ""; MazurkaWindower::getWindowList(pd.valueNames); pd.minValue = 1.0; pd.maxValue = pd.valueNames.size(); pd.defaultValue = 2.0; // probably the Hann window pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); pd.valueNames.clear(); // tenth parameter: Vertical scaling type pd.name = "scale"; pd.description = "Frequency scale"; pd.unit = ""; pd.valueNames.push_back("Hertz"); pd.valueNames.push_back("Interval"); pd.minValue = 0.0; pd.maxValue = 1.0; pd.defaultValue = 0.0; pd.isQuantized = true; pd.quantizeStep = 1.0; pdlist.push_back(pd); pd.valueNames.clear(); return pdlist; } //////////////////////////////////////////////////////////// // // optional polymorphic functions inherited from PluginBase: // ////////////////////////////// // // MzNevermore::getPreferredStepSize -- overrides the // default value of 0 (no preference) returned in the // inherited plugin class. // size_t MzNevermore::getPreferredStepSize(void) const { return getParameterInt("stepsamples"); } ////////////////////////////// // // MzNevermore::getPreferredBlockSize -- overrides the // default value of 0 (no preference) returned in the // inherited plugin class. // size_t MzNevermore::getPreferredBlockSize(void) const { int transformsize = getParameterInt("transformsamples"); int blocksize = getParameterInt("windowsamples"); if (blocksize > transformsize) { blocksize = transformsize; } return blocksize; } //////////////////////////////////////////////////////////// // // required polymorphic functions inherited from PluginBase: // std::string MzNevermore::getName(void) const { return "mznevermore"; } std::string MzNevermore::getMaker(void) const { return "The Mazurka Project"; } std::string MzNevermore::getCopyright(void) const { return "2006 Craig Stuart Sapp"; } std::string MzNevermore::getDescription(void) const { return "Nevermore Spectrogram"; } int MzNevermore::getPluginVersion(void) const { #define P_VER "200606200" #define P_NAME "MzNevermore" const char *v = "@@VampPluginID@" P_NAME "@" P_VER "@" __DATE__ "@@"; if (v[0] != '@') { std::cerr << v << std::endl; return 0; } return atol(P_VER); } //////////////////////////////////////////////////////////// // // required polymorphic functions inherited from Plugin: // ////////////////////////////// // // MzNevermore::getInputDomain -- the host application needs // to know if it should send either: // // TimeDomain == Time samples from the audio waveform. // FrequencyDomain == Spectral frequency frames which will arrive // in an array of interleaved real, imaginary // values for the complex spectrum (both positive // and negative frequencies). Zero Hz being the // first frequency sample and negative frequencies // at the far end of the array as is usually done. // Note that frequency data is transmitted from // the host application as floats. The data will // be transmitted via the process() function which // is defined further below. // MzNevermore::InputDomain MzNevermore::getInputDomain(void) const { return TimeDomain; } ////////////////////////////// // // MzNevermore::getOutputDescriptors -- return a list describing // each of the available outputs for the object. OutputList // is defined in the file vamp-sdk/Plugin.h: // // .name == short name of output for computer use. Must not // contain spaces or punctuation. // .description == long name of output for human use. // .unit == the units or basic meaning of the data in the // specified output. // .hasFixedBinCount == true if each output feature (sample) has the // same dimension. // .binCount == when hasFixedBinCount is true, then this is the // number of values in each output feature. // binCount=0 if timestamps are the only features, // and they have no labels. // .binNames == optional description of each bin in a feature. // .hasKnownExtent == true if there is a fixed minimum and maximum // value for the range of the output. // .minValue == range minimum if hasKnownExtent is true. // .maxValue == range maximum if hasKnownExtent is true. // .isQuantized == true if the data values are quantized. Ignored // if binCount is set to zero. // .quantizeStep == if isQuantized, then the size of the quantization, // such as 1.0 for integers. // .sampleType == Enumeration with three possibilities: // OD::OneSamplePerStep -- output feature will be aligned with // the beginning time of the input block data. // OD::FixedSampleRate -- results are evenly spaced according to // .sampleRate (see below). // OD::VariableSampleRate -- output features have individual timestamps. // .sampleRate == samples per second spacing of output features when // sampleType is set toFixedSampleRate. // Ignored if sampleType is set to OneSamplePerStep // since the start time of the input block will be used. // Usually set the sampleRate to 0.0 if VariableSampleRate // is used; otherwise, see vamp-sdk/Plugin.h for what // positive sampleRates would mean. // MzNevermore::OutputList MzNevermore::getOutputDescriptors(void) const { OutputList odlist; OutputDescriptor od; std::string s; char buffer[1024] = {0}; int val; // First and only output channel: od.name = "spectrogram"; od.description = "Spectrogram"; od.unit = "bin"; od.hasFixedBinCount = true; od.binCount = mz_maxbin - mz_minbin + 1; if (getParameterInt("scale") == S_LINEAR) { for (int i=mz_minbin; i<=mz_maxbin; i++) { val = int((i+0.5) * getSrate() / mz_transformsize + 0.5); sprintf(buffer, "%d:%d", i, val); s = buffer; od.binNames.push_back(s); } } else { int ii; double loghz; double hz; double minhz = mz_minbin * getSrate() / mz_transformsize; double maxhz = mz_maxbin * getSrate() / mz_transformsize; if (minhz < 1.0) { minhz = 1.0; } if (maxhz < 1.0) { maxhz = 1.0; } double minhzlog = log10(minhz) / log10(2.0); double maxhzlog = log10(maxhz) / log10(2.0); double logdiff = maxhzlog - minhzlog; for (int i=0; i<=(int)od.binCount; i++) { loghz = (double)i/(od.binCount-1.0) * logdiff + minhzlog; hz = pow(2.0, loghz); int hzint = int(hz + 0.5); ii = int(hz * mz_transformsize / getSrate()); sprintf(buffer, "%d:%d", ii, hzint); s = buffer; od.binNames.push_back(s); } } if (mz_compress) { od.hasKnownExtents = true; od.minValue = 0.0; od.maxValue = 1.0; } else { od.hasKnownExtents = false; } od.isQuantized = false; // od.quantizeStep = 1.0; od.sampleType = OutputDescriptor::OneSamplePerStep; // od.sampleRate = 0.0; odlist.push_back(od); od.binNames.clear(); return odlist; } ////////////////////////////// // // MzNevermore::initialise -- this function is called once // before the first call to process(). // bool MzNevermore::initialise(size_t channels, size_t stepsize, size_t blocksize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) { return false; } // step size and block size should never be zero if (stepsize <= 0 || blocksize <= 0) { return false; } setChannelCount(channels); setStepSize(stepsize); setBlockSize(blocksize); mz_compress = getParameterInt("compress"); mz_scale = getParameterInt("scale"); mz_transformsize = getParameterInt("transformsamples"); if (mz_transformsize < getBlockSize()) { std::cerr << "MzNevermore::initialize: transform size problem" << std::endl; std::cerr << "MzNevermore::initialize: transformsize = " << mz_transformsize << std::endl; std::cerr << "MzNevermore::initialize: blocksize = " << getBlockSize() << std::endl; return false; } mz_minbin = getParameterInt("minbin"); mz_maxbin = getParameterInt("maxbin"); if (getParameter("minfreq") > 0.0) { // rounding down to the lower integer value mz_minbin = int(getParameter("minfreq") / (getSrate()/mz_transformsize)); } if (getParameter("maxfreq") > 0.0) { // rounding up to the next higher integer value mz_maxbin = int(getParameter("maxfreq") / (getSrate()/mz_transformsize) + 0.999); } if (mz_maxbin >= mz_transformsize) { mz_maxbin = mz_transformsize / 2 - 1; } if (mz_minbin >= mz_transformsize) { mz_minbin = mz_transformsize / 2 - 1; } if (mz_minbin > mz_maxbin) { std::swap(mz_minbin, mz_maxbin); } if (mz_minbin < 0) { mz_minbin = 0; } if (mz_maxbin < 0) { mz_maxbin = 0; } mz_transformer.setSize(mz_transformsize); mz_windower.setSize(getBlockSize()); mz_windower.makeWindow(getParameterString("windowtype")); std::cerr << "MzNevermore::initialize : window is set to " << getParameterString("windowtype") << std::endl; return true; } ////////////////////////////// // // MzNevermore::process -- This function is called sequentially on the // input data, block by block. After the sequence of blocks has been // processed with process(), the function getRemainingFeatures() will // be called. // // Here is a reference chart for the Feature struct: // // .hasTimestamp == If the OutputDescriptor.sampleType is set to // VariableSampleRate, then this should be "true". // .timestamp == The time at which the feature occurs in the time stream. // .values == The float values for the feature. Should match // OD::binCount. // .label == Text associated with the feature (for time instants). // #define sigmoidscale(x,c,w) (1.0/(1.0+exp(-((x)-(c))/((w)/8.0)))) MzNevermore::FeatureSet MzNevermore::process(float **inputbufs, Vamp::RealTime timestamp) { if (getStepSize() <= 0) { std::cerr << "ERROR: MzNevermore::process: " << "MzNevermore has not been initialized" << std::endl; return FeatureSet(); } FeatureSet returnFeatures; Feature feature; feature.hasTimestamp = false; mz_windower.windowNonCausal(mz_transformer, inputbufs[0], getBlockSize()); mz_transformer.doTransform(); int bincount = mz_maxbin - mz_minbin + 1; feature.values.resize(bincount); int i; double ii; if (mz_scale == S_LINEAR) { for (i=0; i<bincount; i++) { feature.values[i] = mz_transformer.getSpectrumMagnitudeDb(i); } } else { // logarithmic scaling std::vector<double> dbs; dbs.resize(bincount); for (i=0; i<bincount; i++) { dbs[i] = mz_transformer.getSpectrumMagnitudeDb(i); if (dbs[i] < DB_MIN) { dbs[i] = DB_MIN; } } double minhz = mz_minbin * getSrate() / mz_transformsize; double maxhz = mz_maxbin * getSrate() / mz_transformsize; if (minhz < 1.0) { minhz = 1.0; } if (maxhz < 1.0) { maxhz = 1.0; } double gincr = pow(maxhz / minhz, 1.0 / bincount); double hz; for (i=0; i<bincount; i++) { hz = minhz * pow(gincr, i); ii = hz * mz_transformsize / getSrate(); if (ii > bincount -1) { ii = bincount - 1; } else if (ii < 0 ) { ii = 0 ; } feature.values[i] = dbs[int(ii+0.5)]; } } if (mz_compress) { for (i=0; i<bincount; i++) { feature.values[i] = sigmoidscale(feature.values[i], -20, 80); } } returnFeatures[0].push_back(feature); return returnFeatures; } ////////////////////////////// // // MzNevermore::getRemainingFeatures -- This function is called // after the last call to process() on the input data stream has // been completed. Features which are non-causal can be calculated // at this point. See the comment above the process() function // for the format of output Features. // MzNevermore::FeatureSet MzNevermore::getRemainingFeatures(void) { // no remaining features, so return a dummy feature return FeatureSet(); } ////////////////////////////// // // MzNevermore::reset -- This function may be called after data processing // has been started with the process() function. It will be called when // processing has been interrupted for some reason and the processing // sequence needs to be restarted (and current analysis output thrown out). // After this function is called, process() will start at the beginning // of the input selection as if initialise() had just been called. // Note, however, that initialise() will NOT be called before processing // is restarted after a reset(). // void MzNevermore::reset(void) { // no actions necessary to reset this plugin } /////////////////////////////////////////////////////////////////////////// // // Non-Interface Functions // // no non-interface functions |